Contribution from the Departments of Chemistry, State University of New York at Buffalo, Buffalo, New York 14214, and University of Illinois at Chicago Circle, Chicago, Illinois 60680

# Crystal Structure of [Mo(diphos)<sub>2</sub>(O)(OH)][BF<sub>4</sub>]

MELVYN ROWEN CHURCHILL\* and FRANK J. ROTELLA

## Received July 27, 1977

The species  $[Mo(diphos)_2(O)(OH)^+][BF_4^-]$ , obtained as the unexpected product of the reaction of  $H_4Mo(diphos)_2$  and  $[Ph_3C^+][BF_4^-]$ , has been studied by the technique of single-crystal x-ray structural analysis. The species crystallizes in the noncentrosymmetric monoclinic space group Cc ( $C_s^4$ , No. 9) with a = 9.973 (3) Å, b = 22.589 (8) Å, c = 21.256 (6) Å,  $\beta = 92.85$  (2)°, V = 4783 (4) Å<sup>3</sup>, and Z = 4. Observed and calculated densities are 1.404 (5) and 1.406 g cm<sup>-3</sup> for mol wt 1012.61. Diffraction data were collected on a Picker FACS-1 four-circle automated diffractometer, and the structure was determined using a combination of Patterson, Fourier, and least-squares refinement techniques. All nonhydrogen atoms were located accurately. Using anisotropic thermal parameters for the heavier (>C) atoms and isotropic thermal parameters for carbon and boron atoms, with phenyl hydrogen atoms in calculated positions, refinement converged with  $R_F = 5.83\%$  and  $R_{wF} = 6.09\%$  for all 4247 independent reflections with  $2\theta < 50^\circ$  (Mo K $\alpha$  radiation). The central molybdenum(IV) ion is octahedrally surrounded by two diphos ligands (which occupy the four equatorial positions), an oxide ion (Mo=O = 1.833 (5) Å), and a hydroxide ion (Mo-OH = 1.952 (5) Å). The absolute configurations of the two diphos ligands are opposite to one another; the cation is thus the  $\delta\lambda$ -Mo(diphos)<sub>2</sub>(O)(OH)<sup>+</sup> isomer.

### Introduction

The material under study was isolated by Osborn and his co-workers<sup>1</sup> from the reaction of  $H_4Mo(diphos)_2$  and  $[Ph_3C^+][BF_4^-]$  in solution at 70 °C. NMR studies showed no remaining hydride resonances (<sup>1</sup>H) and indicated two environments for phosphorus atoms (<sup>31</sup>P). Elemental analysis was in reasonable agreement with the approximate composition  $[Mo(diphos)_2][BF_4]$ . A single-crystal x-ray structural analysis was undertaken to ascertain the precise nature of this product, since it was thought to be an unusual coordinatively unsaturated species. However, as shown below, the material is found to be  $[Mo(diphos)_2(O)(OH)^+][BF_4^-]$ , formed (possibly) by reaction of  $HMo(diphos)_2^+$  with adventitious  $O_2$ .

### **Experimental Section**

Violet crystals were provided by Professor J. A. Osborn. The crystal chosen for the x-ray diffraction study was an irregular plate of thickness 0.185 mm between {010} faces; distances of faces from the origin defined by the point of intersection of  $(01\bar{1})$ ,  $(0\bar{1}\bar{1})$ , and  $(\bar{3}12)$  were 0.088 mm for  $(0\bar{1}0)$ , 0.097 mm for (010), 0.671 mm for (100), 0.450 mm for  $(1\bar{1}5)$ , and 0.334 mm for  $(0\bar{1}7)$ . This crystal was bound to the inside wall of a 0.5-mm diameter Lindemann glass capillary using Dow-Corning high-vacuum silicone grease; the capillary was flushed with N<sub>2</sub>, flame-sealed, fixed in a brass pin using beeswax, and set in a eucentric goniometer head.

Preliminary precession (*hk*0, *hk*1, *h0l*, *h1l* levels) and cone-axis photographs (about the *b* and *c* axes) provided approximate unit-cell dimensions and indicated  $C_{2h}$  (2/*m*) Laue symmetry. The systematic absences *hkl* for h + k = 2n + 1 and *h0l* for l = 2n + 1 are consistent with the centrosymmetric monoclinic space group C2/c ( $C_{2h}^{6}$ , No. 15) or with the noncentrosymmetric monoclinic space group Cc ( $C_{s}^{4}$ , No. 9). The latter was confirmed from the successful solution and refinement of the crystal structure.

The crystal was transferred to, and accurately centered on, a Picker FACS-1 automated four-circle diffractometer, and data to  $2\theta = 50^{\circ}$  (Mo K $\alpha$  radiation) were collected. The general procedure has been described previously;<sup>2</sup> details for this structure are given in Table I.

Following completion of data collection, the  $a^*$  axis was reset to be coincident with the instrumental  $\phi$  axis, and the effects of absorption were investigated by measuring ( $\theta$ -2 $\theta$  scans) the intensity of the 600 reflection at  $\chi = 90^\circ$  and at 10° intervals of  $\phi$  from 0 to 350°. The observed variation (defined as  $100(I_{\text{max}} - I_{\text{min}})/I_{av})$  was 15.5%, indicating that an absorption correction was desirable. All data were then corrected for absorption.

### Determination and Refinement of the Crystal Structure

All calculations were performed on an IBM 370/158 computer at the University of Illinois at Chicago Circle. Programs used were FORDAP (Fourier synthesis, by A. Zalkin), LSHF (structure factor calculations and full-matrix least-squares refinement, by B. G.

 $\ast$  To whom correspondence should be addressed at the State University of New York at Buffalo.

Table I. Experimental Data for the X-Ray Diffraction Study of  $[Mo(diphos)_2(O)(OH)]$  [BF<sub>4</sub>]

Absorption coeff:  $\mu = 4.516 \text{ cm}^{-1}$ ; maximum and minimum transmission factors<sup>d</sup> were 0.9098, 0.8428, respectively

<sup>a</sup> Unit-cell parameters are from a least-squares fit to the setting angles of the resolved Mo K $\alpha_1$  peaks ( $\lambda$  0.709 300 Å) of 12 reflections with  $2\theta = 39-50^{\circ}$ . <sup>b</sup> The density was measured by neutral buoyancy in hexane/CCl<sub>4</sub>. <sup>c</sup> Data reduction and analysis, including decay correction, were performed using the Fortran IV program RDUS2, by B. G. DeBoer. <sup>d</sup> Absorption corrections were applied using the program DRABZ, by B. G. DeBoer.

DeBoer), STAN1 (distances, angles, and their esd's, by B. G. DeBoer), PLOD (least-squares planes and lines, by B. G. DeBoer), and ORTEP (thermal ellipsoid plotting program, by C. K. Johnson).

Scattering factors for all nonhydrogen atoms (zero valence state) were taken from the compilation of Cromer and Waber,<sup>3</sup> Stewart's "best-floated spherical H atom" values<sup>4</sup> were used for hydrogen. The real and imaginary anomalous dispersion terms ( $\Delta f'$  and  $i\Delta f''$ ) were

included for all nonhydrogen atoms, using the values of Cromer and Liberman.<sup>5</sup>

The function minimized during least-squares refinement was  $\sum w(|F_o| - |F_c|)^2$ , where  $w = (\sigma(|F_o|))^{-2}$ . Discrepancy indices used below are defined in eq 1 and 2. The "goodness-of-fit" (GOF) is

$$R_F = \left[\frac{\Sigma ||F_o| - |F_c||}{\Sigma |F_o|}\right] \times 100 \,(\%) \tag{1}$$

$$R_{\rm wF} = \left| \frac{\Sigma w (|F_{\rm o}| - |F_{\rm c}|)^2}{\Sigma w |F_{\rm o}|^2} \right|^{1/2} \times 100 \,(\%)$$
(2)

$$GOF = \left[\frac{\Sigma w(|F_o| - |F_e|)^2}{NO - NV}\right]^{1/2}$$
(3)

defined in eq 3; here NO is the number of observations and NV is the number of variable parameters.

A three-dimensional Patterson map yielded the positions of atoms in the MoP<sub>4</sub> core of the molecule; the noncentrosymmetric space group *Cc* was also clearly indicated. The x and z coordinates of the mo-lybdenum atom were set at  $x = \frac{1}{2}$  and  $z = \frac{1}{4}$  and were not thereafter varied. A series of structure factor calculations and Fourier syntheses led to the location of the 62 nonhydrogen atoms in the  $Mo(diphos)_2$ molety and the BF<sub>4</sub><sup>-</sup> anion. Two cycles of full-matrix least-squares refinement of positional and isotropic thermal parameters yielded discrepancy indices of  $R_F = 17.4\%$  and  $R_{wF} = 19.8\%$ . A difference-Fourier synthesis now revealed two large peaks (of height 7.08 and  $6.42 \text{ e} \text{ Å}^{-3}$ ) lying above and below the MoP<sub>4</sub> plane at distances of  $\sim 2$  Å from the metal atom; no other notable features (i.e., solvent molecules, hydrogen atoms, etc.) were discernible from this map. These two "axial features" were input into the structure factor calculation as fluorine atoms. (This was done without prejudice and for convenience only, since the scattering factors for fluorine were already in our computer program deck.) Four cycles of full-matrix leastsquares refinement of the scale factor, positional parameters for all 64 nonhydrogen atoms, anisotropic thermal parameters for Mo, P, and F atoms, and isotropic thermal parameters for carbon atoms converged with  $R_F = 6.39\%$  and  $R_{wF} = 6.80\%$ .

At this juncture we carefully considered the nature of the two axial ligands and concluded, on the basis of the evidence listed below, that one ligand (identified hereafter as O(A)) was an oxide ion involved in a Mo=O system and that the other ligand (O(B)) was a hydroxide ligand. Our conclusion was based upon the following considerations.

(i) The peak heights of these atoms, taken in conjunction with their behavior under refinement and their chemical environment, are consistent with their being fluoride ions or oxygen-bonded ligands (=0, -OH, or (most unlikely)  $-OH_2$ ).

(ii) Elemental analysis indicates only four fluorine atoms per formula unit. These are believed to be in the  $BF_4^-$  anion. (There is a remote possibility that this could be a  $BF_3OH^-$  ion. It is unlikely that we would be able to distinguish crystallographically between  $BF_4^-$  and  $BF_3OH^-$  ions, particularly if the former were disordered. The equilibrium constant for the reaction  $BF_4^- + H_2O \rightleftharpoons BF_3OH^- + HF$  is 2.3 × 10<sup>-3</sup>; however, this pertains to *aqueous solutions* and is valid only at low pH values.)

(iii) <sup>31</sup>P and <sup>19</sup>F NMR spectra gave no indications of fluoride ions attached to the molybdenum atom—i.e., *no* <sup>31</sup>P–<sup>19</sup>F coupling was detected.

(iv) NMR spectra are sharp, so the complex is diamagnetic. It is most likely to be a Mo(IV) species, although Mo(II) must also be considered.

(v) The axial ligands are nonequivalent, with Mo-O(A) = 1.83Å, Mo-O(B) = 1.95 Å, and  $O(A)-Mo-O(B) = 178^\circ$ . This difference is easily explained if we have Mo=O and Mo-OH linkages. (This also produces a Mo(IV) species, which is otherwise only obtained by having Mo=O and Mo-F linkages.)

(vi) Incorporation of O(A) and O(B) into the structure as oxygen atoms and refinement to convergence provide the ex post facto result that these atoms behave sensibly, yielding equivalent isotropic thermal parameters of 3.27 and 2.75 Å<sup>2</sup> (respectively) as opposed to 3.46 Å<sup>2</sup> for molybdenum and 3.11–3.49 Å<sup>2</sup> for phosphorus atoms.

These two axial ligands were thus entered into the structure factor calculations as oxygen atoms. All hydrogen atoms of the diphos ligands were also included in idealized positions with  $d(C-H) = 0.95 \text{ Å}^6$  and the appropriate sp<sup>2</sup> or sp<sup>3</sup> geometry about carbon. The isotropic



Figure 1. Packing of  $Mo(diphos)_2(O)(OH)^+$  cations  $BF_4^-$  anions within the unit cell, as viewed down *a*.

thermal parameters for the hydrogen atoms were set as  $B(H_i) = B(C_i) + 1.0 \text{ Å}^2$ . In subsequent refinement, all hydrogen atom parameters were coupled to those of their attached carbon atoms—i.e., each CH or CH<sub>2</sub> unit was treated as a rigid, nonrotating, group.

Three cycles of full-matrix least-squares refinement of the scale factor, positional parameters for all nonhydrogen atoms, anisotropic thermal parameters for Mo, P, F, and O atoms, and isotropic thermal parameters for carbon atoms led to convergence with  $R_F = 5.89\%$ ,  $R_{wF} = 6.15\%$ , and GOF = 2.51.

 $R_{wF} = 6.15\%$ , and GOF = 2.51. The chirality of the noncentrosymmetric crystal was now tested by inverting the structure and refining to convergence  $[(\Delta/\sigma)_{max} < 0.1]$  once again. The resulting discrepancy indices ( $R_F = 5.83\%$ ,  $R_{wF} = 6.09\%$ , and GOF = 2.43) show that the inverted structure defines the correct enantiomorph.

The number of independent observations was 4247 and the number of variables was 310, giving a data-to-parameter ratio of 13.70:1.0. The function  $\sum w(|F_0| - |F_c|)^2$  was essentially independent of  $|F_0|$  or  $(\sin \theta)/\lambda$ ; the weighting scheme is thus reasonable. There was no evidence for secondary extinction.

A final difference-Fourier synthesis had as its three highest features (1) a peak of  $0.49 \text{ e} \text{ Å}^{-3}$  at 0.300, 0.165, 0.225 (close to Mo), (2) a peak of  $0.35 \text{ e} \text{ Å}^{-3}$  at 0.690, 0.210, 0.270 (close to O(A)), and (3) a peak of  $0.26 \text{ e} \text{ Å}^{-3}$  at 0.510, 0.195, 0.255 (close to Mo); all other features were below  $0.25 \text{ e} \text{ Å}^{-3}$  in height.

No evidence for the hydrogen atom attached to O(B) was found from this map nor from any of a series of difference-Fourier maps synthesized using increasingly severe cutoffs of data as a function of  $(\sin \theta)/\lambda$ , down to  $(\sin \theta)/\lambda < 0.30$ .

Final positional and isotropic thermal parameters are collected in Table II: anisotropic thermal parameters for the heavier atoms are given in Table III. A table of observed and calculated structure factor amplitudes is available as supplementary material.

#### **Results and Discussion**

Intramolecular distances and angles are collected, with their esd's, in Tables IV and V.

The crystal consists of discrete  $Mo(diphos)_2(O)(OH)^+$  and  $BF_4^-$  ions, which are separated by normal van der Waals distances. Figure 1 shows the crystal structure viewed down *a*. The schemes used for labeling atoms within the Mo(diphos)\_2(O)(OH)<sup>+</sup> cation and the  $BF_4^-$  anion are illustrated in Figures 2 and 3.

The cation is a Mo(IV) derivative, in which the molybdenum atom is in octahedral coordination to two chelating diphos  $(Ph_2P(CH_2)_2PPh_2)$  ligands, an oxide ion (O(A)), and a hydroxide ion (the oxygen atom of which is labeled O(B)). The coordination environment about the molybdenum atom is illustrated in Figure 4.

The Mo=O distance (Mo-O(A) = 1.833 (5) Å) is 0.119 (7) Å shorter than the Mo-OH distance (Mo-O(B) = 1.952 (5) Å) and the O=Mo-OH angle is 178.09 (26)°. To our knowledge, the only other species with a trans O=Mo-OH system that has been subjected to crystallographic examination is Mo(O)(OH)(CN)<sub>4</sub><sup>3-</sup>. In this anionic species, the reported<sup>7</sup>

Table II. Final Positional Parameters and Their Esd's<sup>a</sup> for [Mo(diphos)<sub>2</sub>(O)(OH)] [BF<sub>4</sub>]

| Atom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x                          | У                         | Z                         | $B_{\rm iso}$ , Å <sup>2</sup> | Atom                  | x                        | У                      | Z                      | $B_{iso}$ , $A^2$      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------|---------------------------|--------------------------------|-----------------------|--------------------------|------------------------|------------------------|------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                           |                           |                                |                       |                          |                        |                        |                        |
| (A) A toms of the $Mo(diphos)_2(O)(OH)^2$ for<br>0.104074 (20) = 0.25 ( $2.3500$ ( $2.3500$ ( $2.3500$ ( $11) = 0.1250 (C) = 0.1025 (C) =$ |                            |                           |                           |                                |                       |                          |                        |                        |                        |
| MO<br>D(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5                        | 0.194974(20)              | 0.25                      | 2.430                          | C(25)B                | 0.9909(11)               | 0.1530(3)<br>0.1635(4) | 0.1850(3)<br>0.1802(4) | 5,35(23)               |
| $\Gamma(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.46712(20)                | 0.23043(0)<br>0.17241(0)  | 0.13370(3)                | 2.17                           | C(20)B                | 0.8713(9)<br>0.2726(0)   | 0.1023(4)<br>0.1508(4) | 0.1802(4)              | 3.45(20)               |
| P(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.39980(21)<br>0.20708(22) | 0.17341(9)<br>0.21082(10) | 0.14410(9)<br>0.25450(10) | 2.40                           | C(3)                  | 0.3720(9)<br>0.4012(9)   | 0.1506(4)              | 0.3930(4)              | 4.30 (17)              |
| P(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.39798(22)                | 0.21982(10)               | 0.35450(10)               | 3.49                           | C(31)A                | 0.4912(8)                | 0.2615(4)              | 0.4130(4)              | 4.25 (10)              |
| P(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.49773(21)                | 0.09324(9)                | 0.30158 (9)               | 3.22                           | C(32)A                | 0.6258(9)                | 0.2535(4)              | 0.4222(5)              | 5.00(18)               |
| O(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.6707(3)                  | 0.2152(2)                 | 0.2779(2)                 | 3.27                           | C(33)A                | 0.6998(11)               | 0.2815(3)              | 0.4727(3)              | 0.48(23)               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.3200(4)                  | 0.1706(2)                 | 0.2204(2)                 | 2.75                           | C(34)A                | 0.0340(13)               | 0.3140(3)              | 0.5117(0)              | 7.04 (20)              |
| C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0337(8)                  | 0.2970(3)                 | 0.1311(4)<br>0.1492(4)    | 3.00(14)                       | C(33)A                | 0.3040(14)               | 0.3236(0)              | 0.3073(0)              | 5.29(30)               |
| C(11)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.3411(8)                  | 0.3117(4)                 | 0.1482(4)<br>0.1618(4)    | 3.81(15)                       | C(30)A                | 0.4247(11)               | 0.2965(4)              | 0.4371(3)              | 3.93(21)               |
| C(12)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2174(9)                  | 0.2900 (4)                | 0.1018(4)                 | 4.55(17)                       | C(31)B                | 0.2303(0)                | 0.2366(4)              | 0.3439(4)              | 4.33(10)               |
| C(13)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1023(10)                 | 0.3027(4)                 | 0.1245(4)                 | 5.38 (19)                      | C(32)B                | 0.1146(12)               | 0.2208(0)              | 0.3429(0)              | 10.27 (41)             |
| C(14)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1124(10)<br>0.2240(10)   | 0.3338(4)<br>0.2572(4)    | 0.0724(4)                 | 5.20(18)                       | C(33)B                | -0.0038(16)              | 0.2391(8)              | 0.3278(7)<br>0.2112(7) | 10.27(41)<br>0.20(27)  |
| C(15)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2340(10)<br>0.2499(10)   | 0.3373(4)<br>0.2450(4)    | 0.0339(3)                 | 5.95(21)                       | C(34)B                | 0.0022(10)               | 0.3137(7)              | 0.3112(7)<br>0.2175(5) | 7.59 (37)              |
| C(10)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.3488(10)                 | 0.3439(4)<br>0.2614(2)    | 0.0937(4)                 | 5.18(18)                       | C(35)B                | 0.1140(12)<br>0.2242(11) | 0.34/4(0)              | 0.3175(3)              | 7.52 (27)<br>6.10 (22) |
| C(11)B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5124(9)                  | 0.3014(3)                 | 0.2495(4)                 | 3.43(12)                       | C(30)B                | 0.2343(11)               | 0.3100(4)              | 0.3307(3)              | 0.10(22)               |
| C(12)B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.6039(8)                  | 0.3575(4)                 | 0.2996 (4)                | 4.48 (10)                      | C(4)                  | 0.3537(8)                | 0.0976(4)              | 0.3317(4)              | 4.38(17)               |
| C(13)B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.6276(10)                 | 0.4039(4)                 | 0.3411(5)                 | 5.42 (19)                      | C(41)A                | 0.6308(7)                | 0.0706(3)              | 0.3544(4)              | 3.01 (14)              |
| C(14)B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5562(9)                  | 0.4564 (4)                | 0.3309 (4)                | 5.25 (19)                      | C(42)A                | 0.6229(11)               | 0.0227(5)              | 0.3940(5)              | 6.44(23)               |
| C(15)B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.4664 (10)                | 0.4601(5)                 | 0.2825(4)                 | 5.70 (20)                      | C(43)A                | 0.72/6(11)               | 0.0047(5)              | 0.4344(5)              | 7.00 (24)              |
| C(16)B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.4426 (9)                 | 0.4140(4)                 | 0.2401(4)                 | 4.68 (17)                      | C(44)A                | 0.8460 (10)              | 0.0329(4)              | 0.4343(4)              | 5.34 (19)              |
| C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.6353(8)                  | 0.2458 (4)                | 0.1062 (4)                | 4.15 (16)                      | C(45)A                | 0.8640(10)               | 0.0787 (4)             | 0.3956(4)              | 5.49 (19)              |
| C(21)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5061 (8)                 | 0.1329(4)                 | 0.0832(4)                 | 3.79(15)                       | C(46)A                | 0.7571(9)                | 0.0984(4)              | 0.3549(4)              | 4.//(1/)               |
| C(22)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.4117 (8)                 | 0.0908 (4)                | 0.0997 (4)                | 4.43 (16)                      | C(41)B                | 0.4651(7)                | 0.02/4(3)              | 0.2530(4)              | 3.56 (14)              |
| C(23)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.3470(9)                  | 0.0557(4)                 | 0.0540 (4)                | 5.06 (18)                      | C(42)B                | 0.3361 (8)               | 0.0066 (4)             | 0.2411(4)              | 4.23 (15)              |
| C(24)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.3/52(9)                  | 0.0622 (4)                | -0.0076(5)                | 5.28 (19)                      | C(43)B                | 0.3129(9)                | -0.0407(4)             | 0.1993(4)              | 4.90 (18)              |
| C(25)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.4631 (10)                | 0.1045(4)                 | -0.0248(5)                | 5.67 (20)                      | C(44)B                | 0.4195 (10)              | -0.0661 (4)            | 0.1705(4)              | 5.32 (19)              |
| C(26)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5320 (9)                 | 0.1397(4)                 | 0.0196 (4)                | 4.72 (17)                      | C(45)B                | 0.5482 (9)               | -0.0452(4)             | 0.1840(4)              | 5.18 (18)              |
| C(21)B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.7614 (8)                 | 0.1364(4)                 | 0.1480 (4)                | 4.07 (16)                      | C(46)B                | 0.5/11(8)                | 0.0020(4)              | 0.2252(4)              | 4.35 (16)              |
| C(22)B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.7800(9)                  | 0.0814(4)                 | 0.1220(4)                 | 5.11 (18)                      |                       |                          |                        |                        |                        |
| C(23)B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9072 (10)                | 0.0537(5)                 | 0.1264 (5)                | 6.43 (23)                      |                       |                          |                        |                        |                        |
| C(24)B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0079(11)                 | 0.0819 (5)                | 0.1566 (5)                | 6.83 (24)                      |                       |                          |                        |                        |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                           | (E                        | 3) Atoms in                    | BF <sub>4</sub> - Ion |                          |                        |                        |                        |
| В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.6732 (11)                | 0.4098 (5)                | 0.0153 (5)                | 4.85 (21)                      | F(3)                  | 0.7983 (7)               | 0.3963 (4)             | 0.0332 (3)             | 9.81                   |
| F(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.6744 (6)                 | 0.4468 (3)                | -0.0370 (3)               | 7.64                           | F(4)                  | 0.6082 (6)               | 0.4380 (3)             | 0.0627 (2)             | 6.83                   |
| F(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.6015 (7)                 | 0.3600 (3)                | -0.0036 (3)               | 7.61                           |                       |                          |                        |                        |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                           | (C) Calculate             | d Positions                    | for Hydrog            | en Atoms                 |                        |                        |                        |
| H(1)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 6357                     | 0.3341                    | 0.1.270                   | 4.68                           | $H(32)\Delta$         | 0 6684                   | 0.2289                 | 0 3928                 | 6.00                   |
| $\mathbf{H}(1)\mathbf{A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0337                     | 0.3341                    | 0.1275                    | 4.68                           | $H(33)\Delta$         | 0.0004                   | 0.2257                 | 0.3726                 | 7.48                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.7136                     | 0.2555                    | 0.1986                    | 5 5 3                          | H(34)A                | 0.6846                   | 0.3329                 | 0.5454                 | 8.64                   |
| H(12)A<br>H(12)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.2110                     | 0.2004                    | 0.1347                    | 6 38                           | $H(35)\Delta$         | 0.0040                   | 0.3510                 | 0.5371                 | 9.29                   |
| H(13)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0109                     | 0.2075                    | 0.1547                    | 6.26                           | H(36)A                | 0.3306                   | 0.3048                 | 0.4515                 | 6.95                   |
| $\Pi(1+)A$<br>$\Pi(15)A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0342                     | 0.3443                    | 0.0407                    | 6.95                           | H(32)R                | 0.1151                   | 0.1858                 | 0.3527                 | 8 47                   |
| H(15)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2394                     | 0.3609                    | 0.0832                    | 6.18                           | H(33)B                | -0.0902                  | 0.2396                 | 0.3277                 | 11.27                  |
| H(10)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.4538                     | 0.3005                    | 0.0052                    | 5.48                           | H(34)B                | -0.0809                  | 0.3341                 | 0.2995                 | 10.39                  |
| U(12)D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0524                     | 0.3210                    | 0.3756                    | 6 4 2                          | H(35)B                | 0.1111                   | 0.3886                 | 0.3089                 | 8.52                   |
| H(13)B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0914                     | 0.4000                    | 0.3587                    | 6.25                           | H(36)B                | 0.3172                   | 0.3373                 | 0.3311                 | 7.10                   |
| H(15)B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.3702                     | 0.4962                    | 0.2757                    | 670                            | H(4)A                 | 0.2741                   | 0.1036                 | 0.3263                 | 5.58                   |
| H(15)D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.3785                     | 0.4174                    | 0.2057                    | 5.68                           | H(4)R                 | 0.3460                   | 0.0619                 | 0.3752                 | 5.58                   |
| $\Pi(10)B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5785                     | 0.7177                    | 0.2037                    | 5.00                           | H(42)A                | 0.5399                   | 0.0020                 | 0.3935                 | 7.44                   |
| H(2)A<br>H(2)B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.3003                     | 0.2323                    | 0.0739                    | 5.15                           | H(43)A                | 0.7172                   | -0.0276                | 0.4624                 | 8.00                   |
| H(2)D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.7215                     | 0.2432                    | 0.0004                    | 5 4 3                          | H(44)A                | 0.9180                   | 0.0199                 | 0.4618                 | 6.34                   |
| H(22)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2841                     | 0.0266                    | 0.0656                    | 6.06                           | H(45)A                | 0.9488                   | 0.0980                 | 0.3964                 | 6.49                   |
| H(24)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2071                     | 0.0200                    | -0.0391                   | 6.28                           | H(46)A                | 0.7675                   | 0.1311                 | 0.3275                 | 5.77                   |
| H(25)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.3300                     | 0.1091                    | -0.0682                   | 6.67                           | H(42)B                | 0.2626                   | 0.0244                 | 0.2607                 | 5.23                   |
| H(26)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5958                     | 0.1683                    | 0.0077                    | 5.72                           | H(43)B                | 0.2245                   | -0.0554                | 0.1908                 | 5.90                   |
| H(20)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.3930                     | 0.1005                    | 0.0077                    | 611                            | H(44)B                | 0.4033                   | -0.0984                | 0.1424                 | 6.32                   |
| 11(22)D<br>11(22)D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.7030                     | 0.0027                    | 0.1080                    | 7 4 2                          | H(45)B                | 0.6221                   | -0.0627                | 0.1644                 | 6.18                   |
| H(24)P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 0936                     | 0.0635                    | 0.1508                    | 7 83                           | H(46)B                | 0.6596                   | 0.0166                 | 0.2337                 | 5.35                   |
| H(24)D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 0722                     | 0.00000                   | 0.1008                    | 7 5 3                          | 11(-10)10             | 0.0070                   | 0.0100                 | 5.2007                 | 0.00                   |
| H(26)P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.8586                     | 0.2003                    | 0.1986                    | 6.45                           |                       |                          |                        |                        |                        |
| H(3)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.2971                     | 0.1547                    | 0.4204                    | 5.56                           |                       |                          |                        |                        |                        |
| H(3)R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.4504                     | 0.1430                    | 0.4211                    | 5.56                           |                       |                          |                        |                        |                        |

<sup>a</sup> Esd's, shown in parentheses, are right adjusted to the last digit of the preceding number. <sup>b</sup> "Equivalent isotropic" thermal parameters are given for the heavier atoms. These correspond to the average mean-square displacement along the three principal axes of the anisotropic thermal vibration ellipsoid. For the full anisotropic thermal parameters, see Table III.

Mo=O and Mo-OH distances are 1.698 (7) and 2.077 (7) Å, respectively. However, this structure suffers from a disordered molybdenum atom and the quoted esd's are probably severely underestimated.

Reported Mo=O bond lengths range from 1.668 (5) Å in  $Mo(O)(H_2O)(CN)_4^{2-}$  to 1.834 (9) Å in  $Mo(O)_2(CN)_4^{4-}$  and Mo-OH distances range from 1.96 (1) Å in  $Mo_4O_{10}(OH)_2$  to 2.181 (3) Å in  $MoO_3$ ·2H<sub>2</sub>O.

Robinson, Schlemper, and Murmann<sup>7</sup> have compiled a table which includes known Mo=O and Mo-OH bond lengths.

Differences between Mo=O and Mo-OH distances determined in the present  $Mo(diphos)_2(O)(OH)^+$  ion and in

Table III. Anisotropic Thermal Parameters<sup>a</sup> of the Heavier Atoms

| Atom   | B.,        | B <sub>22</sub> | B 33       | $B_{12}$   | B <sub>13</sub> | B <sub>23</sub> |       | $\langle U \rangle b$ |       |  |
|--------|------------|-----------------|------------|------------|-----------------|-----------------|-------|-----------------------|-------|--|
| <br>Mo | 4 885 (31) | 2 697 (22)      | 2 877 (23) | 0.195 (25) | 1.039 (20)      | 0.149 (22)      | 0.178 | 0.185                 | 0.256 |  |
| P(1)   | 3.55 (9)   | 3.75 (8)        | 3.30 (8)   | -0.24(7)   | 0.45 (7)        | 0.14 (6)        | 0.18  | 0.20                  | 0.22  |  |
| P(2)   | 3.47 (9)   | 3.13 (9)        | 2.79 (8)   | 0.14 (7)   | 0.58 (6)        | 0.10(7)         | 0.18  | 0.20                  | 0.22  |  |
| P(3)   | 4.03 (10)  | 3.54 (10)       | 2.95 (8)   | -0.48(8)   | 0.74 (7)        | -0.43 (7)       | 0.18  | 0.20                  | 0.24  |  |
| P(4)   | 3.71 (9)   | 3.00 (9)        | 2.97 (8)   | -0.39(7)   | 0.23 (6)        | 0.33 (7)        | 0.18  | 0.20                  | 0.22  |  |
| O(Á)   | 2.84 (21)  | 3.18 (22)       | 3.81 (23)  | -0.46 (18) | 0.43 (17)       | 0.11 (18)       | 0.18  | 0.21                  | 0.22  |  |
| O(B)   | 2.96 (20)  | 2.48 (20)       | 2.86 (20)  | 0.41 (16)  | 0.57 (16)       | 0.33 (16)       | 0.17  | 0.18                  | 0.21  |  |
| F(1)   | 8.48 (36)  | 8.01 (36)       | 6.56 (32)  | -0.72 (29) | 1.70 (27)       | 1.68 (27)       | 0.24  | 0.34                  | 0.34  |  |
| F(2)   | 9.39 (39)  | 6.77 (32)       | 6.72 (31)  | -2.11 (28) | 0.92 (27)       | -1.14 (26)      | 0.26  | 0.29                  | 0.37  |  |
| F(3)   | 6.39 (32)  | 15.76 (66)      | 7.01 (34)  | 3.67 (38)  | -2.38 (26)      | -3.69 (39)      | 0.23  | 0.29                  | 0.49  |  |
| F(4)   | 7.77 (33)  | 7.43 (32)       | 5.50 (26)  | -0.91 (26) | 2.42 (24)       | -1.95 (24)      | 0.22  | 0.29                  | 0.36  |  |

<sup>a</sup> These anisotropic thermal parameters are analogous to the usual form of the isotropic thermal parameter and have units of  $A^2$ . They enter the expression for the structure factor in the form  $\exp[-0.25(B_{11}h^2a^{*2} + B_{22}k^2b^{*2} + B_{33}l^2c^{*2} + 2B_{12}hka^*b^* + 2B_{13}hla^*c^* + 2B_{23}c^*kb^*c^*)]$ . <sup>b</sup> These values correspond to the root-mean-square amplitudes of vibration (in A) of the atom along the three principal axes (minor, median, major, respectively) of its vibration ellipsoid. For relative orientations, see figures.

Table IV. Interatomic Distances (A) and Their Esd's

|                                                   | (A) Molybdenum-Ph       | osphorus Distances     |            |
|---------------------------------------------------|-------------------------|------------------------|------------|
| Mo-P(1)                                           | 2.530(2)                | Mo-P(3)                | 2.551 (2)  |
| Mo-P(2)                                           | 2.553 (2)               | Mo-P(4)                | 2.547 (2)  |
|                                                   | (B) Molvbdenum-(        | Oxygen Distances       |            |
| Mo-O(A)                                           | 1.833 (5)               | Mo-O(B)                | 1.952 (5)  |
|                                                   | (C) Phosphorus-Bridg    | ing Carbon Distances   |            |
| P(1)-C(1)                                         | 1,849 (8)               | P(3)-C(3)              | 1.805 (9)  |
| P(2)-C(2)                                         | 1.865 (8)               | P(4)-C(4)              | 1.833 (8)  |
|                                                   | (D) Phosphorus-Pher     | vl Carbon Distances    |            |
| $\dot{\mathbf{P}}(1) = \mathbf{C}(11) \mathbf{A}$ | 1 811 (8)               | P(1)-C(11)B            | 1 818 (8)  |
| P(2) = C(21) A                                    | 1 808 (8)               | P(2) - C(21)B          | 1 812 (8)  |
| P(2) = C(21)A                                     | 1 912 (9)               | P(2) - C(21) P         | 1.816 (9)  |
| P(4) = C(31)A                                     | 1,815 (8)               | P(4) = C(41)B          | 1.810 (9)  |
| I (4)~C(41)A                                      |                         |                        | 1.051 (0)  |
| , ,                                               | (E) Bridging Carbon-Bri | aging Carbon Distances |            |
| C(1)-C(2)                                         | 1,509 (10)              | C(3)-C(4)              | 1.519 (12) |
|                                                   | (F) Phenyl Carbon-Phe   | enyl Carbon Distances  |            |
| C(11)A-C(12)A                                     | 1.372 (11)              | C(11)B-C(12)B          | 1.372 (12) |
| C(12)A-C(13)A                                     | 1.394 (12)              | C(12)B-C(13)B          | 1.384 (12) |
| C(13)A-C(14)A                                     | 1.343 (13)              | C(13)B-C(14)B          | 1.394 (13) |
| C(14)A-C(15)A                                     | 1.369 (13)              | C(14)B-C(15)B          | 1.332 (12) |
| C(15)A-C(16)A                                     | 1.390 (12)              | C(15)B-C(16)B          | 1.391 (13) |
| C(16)A-C(11)A                                     | 1.397 (12)              | C(16)B-C(11)B          | 1.386 (11) |
| C(21)A-C(22)A                                     | 1.396 (11)              | C(21)B-C(22)B          | 1.376 (12) |
| C(22)A-C(23)A                                     | 1.387 (12)              | C(22)B-C(23)B          | 1.414 (13) |
| C(23)A-C(24)A                                     | 1.362 (12)              | C(23)B-C(24)B          | 1.327 (13) |
| C(24)A-C(25)A                                     | 1.359 (13)              | C(24)B-C(25)B          | 1.336 (15) |
| C(25)A-C(26)A                                     | 1.391 (12)              | C(25)B-C(26)B          | 1.395 (13) |
| C(26)A-C(21)A                                     | 1.396 (11)              | C(26)B-C(21)B          | 1,396 (12) |
| C(31)A-C(32)A                                     | 1.356 (11)              | C(31)B-C(32)B          | 1.388 (14) |
| C(32)A-C(33)A                                     | 1.419 (13)              | C(32)B-C(33)B          | 1.427 (17) |
| C(33)A-C(34)A                                     | 1.318 (16)              | C(33)B-C(34)B          | 1.330 (19) |
| C(34)A-C(35)A                                     | 1.320 (16)              | C(34)B-C(35)B          | 1.326 (16) |
| C(35)A-C(36)A                                     | 1,439 (16)              | C(35)B-C(36)B          | 1.402 (15) |
| C(36)A-C(31)A                                     | 1.413 (13)              | C(36)B-C(31)B          | 1.385 (13) |
| C(41)A - C(42)A                                   | 1 382 (12)              | C(41)B-C(42)B          | 1 381 (10) |
| C(42) = C(43) = C(43)                             | 1 380 (14)              | C(42)B-C(43)B          | 1 402 (11) |
| C(43) A - $C(44)$ A                               | 1 342 (13)              | C(43)B-C(44)B          | 1 379 (12) |
| $C(44) \Delta = C(45) \Delta$                     | 1.340(13)               | C(44)B-C(45)B          | 1:385 (13) |
| C(45)A - C(46)A                                   | 1.0+0(13)<br>1 410 (12) | C(45)B-C(45)B          | 1 303 (12) |
| C(46)A = C(41)A                                   | 1 353 (11)              | C(45)B-C(41)B          | 1 362 (11) |
| C(+0)A-C(+1)A                                     | 1.555 (11)              | C(40)D=C(41)D          | 1.302 (11) |
| D E(1)                                            | (G) Boron-Flue          | orine Distances        | 1 221 (12) |
| B-F(1)                                            | 1.391 (12)              | B-F(3)                 | 1.321 (12) |
| B-F(2)                                            | 1.382 (12)              | B-F(4)                 | 1.380 (12) |

Mo(O)(OH)(CN)<sub>4</sub><sup>3-7</sup> may be affected by one or more of the following factors: (1) a change (by 4 units) of the net charge on the ion; (2) the relative  $\pi$  acidities of diphos and CN<sup>-</sup> ligands; (3) systematic errors in Mo=O and Mo-OH distances caused by disorder within the Mo(O)(OH)(CN)<sub>4</sub><sup>3-</sup> ion (see above); (4) the (remote) possibility of minor disorder between oxide and hydroxide ligands in our present Mo(diphos)<sub>2</sub>(O)(OH)<sup>+</sup> cation. There is no clear evidence for this except that the thermal ellipsoid of the molybdenum atom

defines (approximately) a prolate spheroid extended in a direction perpendicular to the  $MoP_4$  plane. The extension is, however, slight; root-mean-square amplitudes of vibration of the molybdenum atom along its three principal axes are 0.178, 0.185, and 0.256 Å. The vibration ellipsoids of O(A) and O(B) are closer to spherical, root-mean-square amplitudes of vibration along the principal axes being 0.18, 0.21, and 0.22 Å for O(A) and 0.17, 0.18, and 0.21 Å for O(B).

The MoP<sub>4</sub> system is approximately planar, deviations of

#### Table V. Intramolecular Angles (deg) and Their Esd's

| (A) Oxyge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n-Molybdenum-Phosphorus an  | id Oxygen-Molybdenum-Oxygen An | gles                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------|----------------------|
| O(A)-Mo-P(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 86.40 (16)                  | O(B)-Mo-P(1)                   | 95.32 (14)           |
| O(A)-Mo-P(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 86.33 (16)                  | O(B)-Mo-P(2)                   | 93.17 (14)           |
| O(A)-Mo-P(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 93.89 (16)                  | O(B)-Mo-P(3)                   | 86.68 (14)           |
| O(A)-Mo-P(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 96.55 (16)                  | O(B)-Mo-P(4)                   | 81.76 (14)           |
| O(A)-Mo-O(B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 178.09 (26)                 |                                |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (B) Phosphorus-Molybde      | num-Phosphorus Angles          |                      |
| P(1)-Mo-P(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 79.29 (7)                   | P(3)-Mo-P(4)                   | 79.12 (7)            |
| P(1)-Mo-P(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 98.89 (7)                   | P(2)-Mo-P(4)                   | 102.68 (7)           |
| P(2)-Mo-P(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 178.15 (8)                  | P(1)-Mo-P(4)                   | 176.52 (7)           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (C) Molybdenum-Phosphor     | us-Bridging Carbon Angles      |                      |
| Mo-P(1)-C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 103.0 (2)                   | Mo-P(3)-C(3)                   | 107.2 (3)            |
| Mo-P(2)-C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 107.7 (3)                   | Mo-P(4)-C(4)                   | 103.0 (3)            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (D) Molyhdenum-Phospho      | rus-Phenyl Carbon Angles       |                      |
| $M_0 = P(1) = C(11)A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 116.8 (3)                   | $M_0 - P(1) - C(11)B$          | 118.9 (3)            |
| $M_0 - P(2) - C(21) A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121.2(3)                    | $M_0 - P(2) - C(21)B$          | 115.5(3)             |
| $M_0 - P(3) - C(31) A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121.2(3)<br>121.3(3)        | $M_{0} = P(3) = C(31)B$        | 112.5(3)             |
| $M_0 - P(4) - C(41)A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119.9 (3)                   | Mo - P(4) - C(41)B             | 112.5(3)<br>119.7(2) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (T) Deideine Center Dheesh  |                                |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (E) Bridging Carbon-Phosph  | orus-Phenyl Carbon Angles      | 102.0 (4)            |
| C(1) - P(1) - C(11)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 107.6 (4)                   | C(1) - P(1) - C(11)B           | 102.8 (4)            |
| C(2) - P(2) - C(21)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 103.7 (4)                   | C(2)-P(2)-C(21)B               | 103.7 (4)            |
| C(3)-P(3)-C(31)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100.9 (4)                   | C(3) - P(3) - C(31)B           | 108.0 (4)            |
| C(4) - P(4) - C(41)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 104.6 (4)                   | C(4) - P(4) - C(41)B           | 104.4 (4)            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (F) Phenyl Carbon-Phospho   | orus-Phenyl Carbon Angles      |                      |
| C(11)A-P(1)-C(11)B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 106.4 (4)                   | C(31)A-P(3)-C(31)B             | 105.7 (4).           |
| C(21)A-P(2)-C(21)B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 103.1 (4)                   | C(41)A-P(4)-C(41)B             | 103.2 (4)            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (G) Phosphorus-Bridging Car | bon-Bridging Carbon Angles     |                      |
| P(1)-C(1)-C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 111.4 (5)                   | P(3)-C(3)-C(4)                 | 114.2 (6)            |
| P(2)-C(2)-C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 113.7 (5)                   | P(4)-C(4)-C(3)                 | 108.5 (6)            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (H) Phenyl Carbon-Ca        | arbon-Carbon Angles            |                      |
| C(16)A = C(11)A = C(12)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 117.4 (8)                   | C(16)B-C(11)B-C(12)B           | 118.5 (8)            |
| C(11)A = C(12)A = C(13)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 121.9 (8)                   | C(11)B-C(12)B-C(13)B           | 122.2 (8)            |
| C(12)A = C(13)A = C(14)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.4 (9)                   | C(12)B-C(13)B-C(14)B           | 118.4 (9)            |
| C(13)A - C(14)A - C(15)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.9(10)                   | C(13)B-C(14)B-C(15)B           | 119.5 (10)           |
| C(14) A = C(15) A = C(16) A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120.9(10)<br>120.0(10)      | C(14)B-C(15)B-C(16)B           | 122.7 (10)           |
| C(15)A - C(16)A - C(11)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.3 (9)                   | C(15)B-C(16)B-C(11)B           | 118.8 (8)            |
| $C(26) \wedge -C(21) \wedge -C(22) \wedge$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 118 6 (7)                   | C(26)B-C(21)B-C(22)B           | 117.4(8)             |
| C(21)A = C(22)A = C(23)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.6 (8)                   | C(21)B-C(22)B-C(23)B           | 120.8 (0)            |
| C(22)A - C(23)A - C(24)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.0 (0)                   | C(22)B-C(22)B-C(23)B           | 120.0(0)<br>1184(11) |
| C(22)A - C(23)A - C(24)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.1(9)                    | C(22)B-C(23)B-C(24)B           | 124.2 (12)           |
| $C(24) \land C(25) \land C(26) \land C(26$ | 120.0 (9)                   | C(24)B-C(25)B-C(26)B           | 118.1 (10)           |
| C(24)A = C(25)A = C(20)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 121.0(9)                    | C(25) P C(25) D - C(20) D      | 121.2(10)            |
| C(25)A = C(26)A = C(21)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.1 (8)                   | C(25)B-C(20)B-C(21)B           | 121.2(10)<br>1177(9) |
| C(30)A = C(31)A = C(32)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.1 (8)                   | $C(30)B^{-}C(31)B^{-}C(32)B$   | 117.7(9)<br>1180(10) |
| C(31)A = C(32)A = C(33)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.0 (9)                   | C(31)B-C(32)B-C(33)B           | 110.9 (12)           |
| C(32)A-C(33)A-C(34)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 118.3 (11)                  | C(32)B-C(33)B-C(34)B           | 119.5 (15)           |
| C(33)A-C(34)A-C(35)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 125.7 (14)                  | C(33)B-C(34)B-C(35)B           | 123.0 (10)           |
| C(34)A - C(35)A - C(36)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 118.1 (13)                  | C(34)B-C(35)B-C(36)B           | 117.3 (13)           |
| C(35)A-C(36)A-C(31)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 117.8 (10)                  | C(35)B-C(36)B-C(31)B           | 122.0 (10)           |
| C(46)A-C(41)A-C(42)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 118.3 (8)                   | C(46)B-C(41)B-C(42)B           | 120.9 (7)            |
| C(41)A-C(42)A-C(43)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.9 (10)                  | C(41)B-C(42)B-C(43)B           | 119.9 (8)            |
| C(42)A-C(43)A-C(44)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.9 (11)                  | C(42)B-C(43)B-C(44)B           | 119.5 (8)            |
| C(43)A-C(44)A-C(45)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · 120.8 (10)                | C(43)B-C(44)B-C(45)B           | 119.6 (9)            |
| C(44)A-C(45)A-C(46)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.9 (9)                   | C(44)B-C(45)B-C(46)B           | 120.9 (9)            |
| C(45)A-C(46)A-C(41)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.1 (9)                   | C(45)B-C(46)B-C(41)B           | 119.3 (8)            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (I) Fluorine-Boror          | n-Fluorine Angles              |                      |
| F(1)-B-F(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 106.3 (8)                   | F(2)-B-F(3)                    | 111.3 (9)            |
| F(1)-B-F(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 108.9 (9)                   | F(2)-B-F(4)                    | 109.4 (8)            |
| F(1)-B-F(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109.2 (8)                   | F(3)-B-F(4)                    | 111.6 (8)            |

individual atoms from the least-squares plane being 0.0285 (4) Å for Mo, -0.035 (2) Å for P(1), 0.020 (2) Å for P(2), 0.021 (2) Å for P(3), and -0.035 (2) Å for P(4) (see Table VI). Interatomic angles within this plane suffer from distortion caused by the chelating nature of the diphos ligands. Thus, the intraligand angles P(1)-Mo-P(2) and P(3)-Mo-P(4) are 79.29 (7) and 79.12 (7)° (respectively), whereas the cis-*inter*ligand angles are P(1)-Mo-P(3) = 98.89 (7)° and P(2)-Mo-P(4) = 102.68 (7)°. The four independent molybdenum-phosphorus bond lengths are Mo-P(1) = 2.530(2)Å, Mo-P(2) = 2.553 (2) Å, Mo-P(3) = 2.551 (2) Å, and Mo-P(4) = 2.547 (2) Å; the average value is  $2.545 \pm 0.010$ Å.8

The five-membered Mo-P-C-C-P chelate rings each have the expected puckered geometry. The absolute configurations of the two rings are opposite one from another (see Figure 4). The cation is thus correctly named as the  $\delta\lambda$ -Mo(diphos)<sub>2</sub>- $(O)(OH)^+$  isomer.

The phosphorus-phenyl distances range from 1.808 (8) to 1.831 (8) Å, averaging  $1.816 \pm 0.007$  Å. This may be compared to the  $P-\tilde{C}(sp^3)$  distances which range from 1.805 (9) to 1.865 (8) Å averaging  $1.838 \pm 0.026$  Å.

Distances and angles within the phenyl groups are all normal. Internal angles at the P-bonded carbon are mostly reduced from the regular trigonal angle, individual values being

Table VI. Least-Squares Planes and Deviations (Å) of Atoms Therefrom a, b

|    | Atom             | Dev            | Atom                  | Dev             |
|----|------------------|----------------|-----------------------|-----------------|
| Ι. | MoP, Plane:      | 0.89499X + 0   | 0.18969Y + 0          | 40375Z = 7.1758 |
|    | Mo*              | 0.0285 (4)     | P(3)*                 | 0.021(2)        |
|    | P(1)*            | -0.035(2)      | P(4)*                 | -0.035(2)       |
|    | P(2)*            | 0.020(2)       | -(')                  |                 |
|    |                  | 0.020 (2)      | <b>C</b> ( <b>A</b> ) | 0.100 (0)       |
|    | C(1)             | 0.925 (8)      | C(3)                  | -0.192 (9)      |
|    | C(2)             | 0.358 (8)      | C(4)                  | -0.919 (9)      |
|    | C(11)A           | -1.666 (8)     | C(31)A                | 1.493 (8)       |
|    | C(11)B           | 0.848 (8)      | C(31)B                | -1.343 (8)      |
|    | C(21)A           | -1.455 (8)     | C(41)A                | 1.513 (8)       |
|    | C(21)B           | 1.333 (8)      | C(41)B                | -0.979 (7)      |
|    | , i o            | 10472 1 0 975  | 20 0 6 2 2 0 2        | 7 - 6 9912      |
|    | $\Pi_{1} = 0.$   | 1042A + 0.023  | 2I + 0.33392          | 2 = 0.0042      |
|    | C(11)A*          | 0.007(8)       | C(15)A*               | -0.009 (10)     |
|    | C(12)A*          | -0.013 (9)     | C(16)A*               | 0.003(10)       |
|    | C(13)A*          | 0.006 (10)     | P(1)                  | 0.050(2)        |
|    | C(14)A*          | 0.005 (10)     |                       |                 |
|    | I <b>I</b> I. 0. | 7456X + 0.342  | 8Y - 0.5714Z          | = 3.3895        |
|    | C(11)B*          | -0.002 (8)     | C(15)B*               | -0.009 (10)     |
|    | C(12)B*          | -0.001 (8)     | C(16)B*               | 0.006 (9)       |
|    | C(13)B*          | -0.001 (9)     | P(1)                  | -0.052 (2)      |
|    | C(14)B*          | 0.006 (9)      |                       |                 |
|    | IV. 0.           | 7279X - 0.6782 | 2Y + 0.1011Z          | = 1.7440        |
|    | C(21)A*          | 0.008 (8)      | C(25)A*               | -0.017 (10)     |
|    | C(22)A*          | -0.008 (8)     | C(26)A*               | 0.004 (9)       |
|    | C(23)A*          | -0.004 (9)     | P(2)                  | 0.152 (2)       |
|    | C(24)A*          | 0.017 (10)     |                       |                 |
|    | V0.2             | 2821X - 0.4402 | 2Y + 0.8524Z          | =-0.7648        |
|    | C(21)B*          | -0.012 (8)     | C(25)B*               | -0.005 (11)     |
|    | C(22)B*          | 0.005 (9)      | C(26)B*               | 0.012 (10)      |
|    | C(23)B*          | 0.003 (11)     | P(2)                  | 0.004 (2)       |
|    | C(24)B*          | -0.003 (11)    |                       |                 |
|    | <b>VI.</b> 0.    | 1834X + 0.792  | 4Y - 0.5818Z          | c = 0.3816      |
|    | C(31)A*          | -0.009 (8)     | C(35)A*               | 0.005 (14)      |
|    | C(32)A*          | 0.005 (9)      | C(36)A*               | 0.004 (10)      |
|    | C(33)A*          | 0.005 (11)     | P(3)                  | -0.166 (2)      |
|    | C(34)A*          | -0.010 (13)    |                       |                 |
|    | VII0             | .1536X + 0.200 | 57Y + 0.9663          | Z = 7.9649      |
|    | C(31)B*          | -0.018 (8)     | C(35)B*               | 0.047 (12)      |
|    | C(32)B*          | 0.008 (12)     | C(36)B*               | -0.008 (10)     |
|    | C(33)B*          | 0.031 (16)     | P(3)                  | -0.218 (2)      |
|    | C(34)B*          | -0.060 (15)    |                       |                 |
|    | VIII             | 0.3360X + 0.62 | 29Y + 0.706           | 5Z = 4.2934     |
|    | C(41)A*          | 0.007 (8)      | C(45)A*               | -0.007 (10)     |
|    | C(42)A*          | -0.011 (11)    | C(46)A*               | 0.002 (9)       |
|    | C(43)A*          | 0.006 (11)     | P(4)                  | -0.019 (2)      |
|    | C(44)A*          | 0.004 (10)     |                       |                 |
|    | IX O             | 0791 X 0 644   | 0Y + 0.76102          | ' = 4 0396      |
|    | C(41)R*          | -0.006(7)      | C(45)R*               | 0.006 (9)       |
|    | C(42)B*          | 0.004 (8)      | C(46)B*               | 0.000(9)        |
|    | C(43)B*          | 0.002(9)       | P(4)                  | -0.157(2)       |
|    | C(44)B*          | -0.007(10)     | - (-)                 |                 |

<sup>a</sup> Cartesian (A) coordinates (X, Y, Z) are related to the fractional cell coordinates (x, y, z) by the transformation

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} a & 0 & c \cos \beta \\ 0 & b & 0 \\ 0 & 0 & c \sin \beta \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

<sup>b</sup> Atoms marked with an asterisk were included in calculating the plane. All other atoms were assigned zero weight.

 $C(16)A-C(11)A-C(12)A = 117.4 (8)^{\circ}, C(16)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11)B-C(11$  $C(12)B = 118.5 (8)^{\circ}, C(26)A-C(21)A-C(22)A = 118.6 (7)^{\circ}, C(26)B-C(21)B-C(22)B = 117.4 (8)^{\circ}, C(36)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)A-C(31)$  $C(32)A = 120.1 (8)^{\circ}, C(36)B-C(31)B-C(32)B = 117.7 (9)^{\circ},$ C(46)A-C(41)A-C(42)A = 118.3 (8)°, and C(46)B-C(41)B-C(42)B = 120.9 (7)°. This result is expected and has been discussed by Coulson et al.9



Figure 2. Labeling of atoms in the  $Mo(diphos)_2(O)(OH)^+$  cation (ORTEP diagram; 30% ellipsoids).



Figure 3. The  $BF_4^-$  anion (ORTEP diagram; 30% ellipsoids).



Figure 4. The Mo(C<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>PC<sub>2</sub>)<sub>2</sub>O<sub>2</sub> core of the molecule, showing the octahedral coordination geometry about the Mo(IV) atom and the conformations of the diphos ligands (ORTEP diagram).

The phenyl ring defined by atoms C(31)B-C(36)B appears to be slightly puckered. Each of the other phenyl rings is planar within the limits of experimental error (see Table VI) and has approximate  $C_{2v}$  symmetry.

Acknowledgment. We thank Professor J. A. Osborn for providing the crystals and the National Science Foundation for financial support through Grant CHE77-04971 (to M. R.C.). We are also grateful to Dr. B. G. DeBoer for assistance during the early phases of this analysis.

Registry No. [Mo(diphos)<sub>2</sub>(O)(OH)][BF<sub>4</sub>], 65276-03-1.

Supplementary Material Available: Listing of structure factor amplitudes (11 pages). Ordering information is given on any current masthead page.

#### **References and Notes**

- J. A. Osborn, personal communication.
  M. R. Churchill and B. G. DeBoer, *Inorg. Chem.*, 12, 525 (1973).
  D. T. Cromer and J. T. Waber, *Acta Crystallogr.*, 18, 104 (1965).
  R. F. Stewart, E. R. Davidson, and W. T. Simpson, *J. Chem. Phys.*, 42, 0177 (1975). (2)
- (3)
- (4) 3175 (1965); see Table 11 on p 3178.
- (5) D. T. Cromer and D. Liberman, J. Chem. Phys., 53, 1891 (1970).
  (6) M. R. Churchill, Inorg. Chem., 12, 1213 (1973).
  (7) P. R. Robinson, E. O. Schlemper, and R. K. Murmann, Inorg. Chem.,
- 14, 2035 (1975). (8)
- Esd's on average distances are calculated using the root-mean-square "scatter" from the mean, i.e., esd of average =  $[\sum_{i=1}^{i=N} (d_i d_i)^2 / (N 1)]^{1/2}$ . Here  $d_i$  is the *i*th value and  $\overline{d}$  is the mean of N equivalent reasurements. These esd's are given in the text in the form  $\pm X.XXX$ Å, to distinguish them from esd's on individual parameters, which are enclosed by parentheses.
- (9)A. Domenicano, A. Vaciago, and C. A. Coulson, Acta Crystallogr., Sect. B, 31, 1630 (1975).